Failure to respond to COVID-19 vaccination identifies individuals with previously undiagnosed severe antibody deficiency: preliminary data from the COVID-19 ENLIST study

1. STUDY QUESTION

Can failure to respond to COVID-19 vaccination identify individuals with undiagnosed antibody deficiency?

Dr Mark Ponsford ST5 Clinical Immunology & Allergy Welsh Clinical Academic Trainee (WCAT) Cardiff University & Immunodefiency Centre for Wales

2. METHODS

PRELIMINARY ANALYSIS OF MULTI-CENTRE PROSPECTIVE OBSERVATIONAL STUDY COHORT

Samples: Serum was obtained from solid-organ transplant recipients enrolled in the COVID-19 ENLIST vaccination substudy (REC reference: 20/YH/0309).

Laboratory analysis: Anti-SARS-CoV-2 spike S1 IgG serological responses were first determined using a commercial assay (EUROIMMUN) after ≥ 2 doses, as reported (1,2) . Total IgG, IgA, and IgM levels were analysed using the Optilite® turbidimeter in consecutive stored sera with anti-SARS-CoV-2 spike IgG levels above ("responders", n=15) and below ("non-responders", n=18) the assay's cutoff for a positive anti-spike IgG response.

Outcomes: Presence of abnormally low immunoglobulin result (below 5th percentile UK healthy adult range) in COVID-19 vaccine "responders" vs "non-responders" OR Presence of severely low immunoglobulin IgG < 4g/L **(3)**

<u>Cohort:</u>	Healthy adults	Solid organ transplant recipients	
Immunoglobulin	<u>UK reference</u>	<u>Vaccine</u>	Vaccine non-
class and lower	<u>range</u>	<u>responders</u>	<u>responders</u>
<u>limit of normal</u>	(expected %)	<u>(n=15)</u>	<u>(n=18)</u>
<u>lgG < 6 g/L</u>	5.0%	6.8 %	22.2 %
IgG < 4g/L *	0.4%	0.0 %	5.5 %
<u>lgA < 0.8 g/L</u>	5.0 %	0.0 %	11.1 %
<u>lgM < 0.5 g/L</u>	5.0 %	40.0 %	44.4 %

* Severe IgG hypogammaglobulinaemia, (3)

4. FINDINGS VISUALISED

5. STUDY SIGNIFICANCE

- Antibody deficiency is a treatable cause of infection susceptibility, however, recognition is reliant on laboratory and clinical diagnosis (4).
- Solid organ transplant recipients are at increased risk of hypogammaglobulinaemia due to factors including the use of anti-rejection medications, but severe deficiency remains uncommon (5).
- Remarkably, this pilot study identified an individual with an IgG level of 3.1g/L, consistent with severe IgG deficiency, directing clinical assessment with potential consideration of immunoglobulin replacement therapy.
- This preliminary data support the hypothesis that failure to produce a detectable IgG response to the SARS-CoV-2 spike following at least 2 COVID-19 vaccine doses maybe associated with a reduction in the serum levels of IgG and suggests expansion of this pilot study.

6. KEY CONTRIBUTORS

Kathryn Bramhall, Leanne Grant, and Prof Stephen Jolles *on behalf of the COVID-19 ENLIST Study Team.* Funding: Welsh Clinical Academic Training Scheme, Association of Clinical Pathologists, Kidney Wales Charity.

7. CORE REFERENCES

Ponsford MJ et al, Journal of Clinical Immunology, 2022. 2: Asderakis A et al, Transplantation, 2022
Florescu DF, American Journal of Transplantation, 2013; 4: Ponsford MJ et al, British Medical Journal, 2019. 5: Sarmiento E et al, Transplantation Infectious Disease, 2021.

3. KEY RESULTS