# Systematic review of mTOR inhibitor treatment, biomarkers and prophylaxis for tuberous sclerosis complex-associated seizures

Author: Jingwen Zhang<sup>1</sup> Supervisor: Professor Deb Pal<sup>2</sup>

1: GKT School of Medical Education, King's College London, London, United Kingdom 2:Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom



#### Introduction

- Mutations in *Tsc*<sup>1</sup> and *Tsc*<sup>2</sup> genes result in hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) pathway, linked to epileptogenesis in tuberous sclerosis complex (TSC).
- Everolimus: mTOR inhibitor, FDA-approved for TSC-associated seizures in patients older than 2 years in 2018

#### Outline

- 1. Effectiveness of mTOR inhibitors in TSC-associated seizures [PubMed]
- > Patient stratification for treatment with mTOR inhibitors
- 2. Predictive, diagnostic and prognostic biomarkers of epilepsy in TSC [PubMed]
- 3. Seizure prophylaxis with mTOR inhibitors

#### Effectiveness of mTOR inhibitors in TSCassociated seizures Everolimus:

**Long-term safety:** 94% of 48 TSC patients with refractory epilepsy maintained improved seizure control over 4 years; adverse effects decreased over time

White matter modification: pharmacologically modify the genetic defect of TSC (incl. normalappearing white matter), 28 pts, 12-18 months; longer exposure & younger age (< 10) -> greater effect **Dosing and response**: 5-7 ng/mL initially and 5-15 ng/mL if inadequate clinical response; more difficult for pts with higher baseline seizure frequency to respond

# Patient stratification for treatment with mTOR inhibitors:

**Age:** more effective in <18, greatest in <6; longer exposure & early initiation -> long-term efficacy; critical time windows; more calcification in cortical tubers with age -> resistance

**Baseline seizure frequency:** higher baseline seizure frequency -> more difficulty becoming a responder to adjunctive **everolimus** 

**Calcification in cerebral parenchyma:** cerebral parenchymal calcification in epileptic discharge sites -> more likely resistant to appropriate AEDs and adjunctive rapamycin

# adjunctive **rapamycin**

**Refractory seizures:** refractory TSC-associated epilepsy -> higher diffusivity increase, i.e., greater response to everolimus

|                                           | Author<br>Year               | Medication                                          | Condition                                    | No.<br>of<br>Pts | Results                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|------------------------------|-----------------------------------------------------|----------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>II</sup> Small-scale clinical trials |                              |                                                     |                                              |                  |                                                                                                                                                                                                                                                                                                         |
|                                           | Krueger<br>et al.<br>2010    | Everolimus                                          | TSC-<br>associated<br>SEGA                   | 16               | <ul> <li>Improved seizure control over 34.2 months (median)</li> <li>No. of pts with no seizures reported since last visit (or more than 6 months since last seizure) increased from 38.5% at baseline to 65.2% at 24 months</li> </ul>                                                                 |
|                                           | Krueger<br>et al.<br>2013    | Everolimus                                          | TSC-<br>associated<br>refractory<br>epilepsy | 20               | <ul> <li>Well-tolerated with only mild and moderate adverse effects</li> <li>Duration-dependent mechanism</li> </ul>                                                                                                                                                                                    |
| 1                                         | Cardam<br>one et<br>al. 2014 | Everolimus<br>Sirolimus                             | TSC-<br>associated<br>refractory<br>epilepsy | 7                | <ul> <li>1, 4 and 2 patient(s) had &gt;90%, 50%-90% and &lt;50%<br/>reduction in seizure frequency over 18 months (median)</li> <li>Patient receiving everolimus had a 25-50% seizure<br/>frequency reduction</li> </ul>                                                                                |
| f                                         |                              | Sirolimus<br>(adjunctive)                           | TSC-<br>associated<br>refractory<br>epilepsy | 23               | <ul> <li>Despite seizure frequency reduction, significant benefits<br/>could not be proven</li> <li>Study lacked the precision to exclude sirolimus benefits</li> </ul>                                                                                                                                 |
|                                           | EXIST-3 clinical trial       |                                                     |                                              |                  |                                                                                                                                                                                                                                                                                                         |
|                                           | French<br>et al.<br>2016     | Everolimus<br>(adjunctive,<br>low/high<br>exposure) | TSC-<br>associated<br>refractory<br>epilepsy | 366              | <ul> <li>Greater response rate, median reduction in seizure<br/>frequency and number of seizure-free days</li> <li>Duration-response and dose-response</li> <li>2019 Mizuguchi et al.: Japanese study confirmed results</li> <li>2018 Curatolo et al.: patients &lt;6 greatest benefit among</li> </ul> |

# Predictive, diagnostic & prognostic biomarkers of epilepsy in TSC Predictive biomarkers

**Electroencephalogram (EEG)**: epileptiform discharges in video EEG monitoring; serial routine EEGs; presence of interictal epileptiform dischargers; increased neural connectivity in TSC infants

paediatric population (<18)

**Genetics:** no mutation or mosaic mutation -> reduced risks of seizures; *Tsc*1 mutation was associated with a milder phenotype than *Tsc*2; missense mutations in the central region of *Tsc*2 (exons 23-33) -> reduced incidence of infantile spasms; increased expression of genes for cell adhesion (VCAM1, integrins and CD44) and inflammatory responses (complement factors, serpinA3, CCL2 and several cytokines); decreased expression of genes for synaptic transmission (glial glutamate transporter GLT-1 and voltage-gated channel); different gene expression in peri-tuberal cortex from control cortex

miRNAs: 4 candidate biomarker miRNAs for seizure development in TSC: miR 199a-5p, miR 21-5p, miR 29b-3q and miR 324-5p

**Inflammation**: increased CSF nerve growth factor; blood brain barrier dysfunction and perivascular inflammation; prenatal key inflammatory pathway activation in developing brain lesions in TSC

**Other biomarkers identified by EPISTO**: brain lesions in prenatal MRI; 3 SNPs were associated with epilepsy onset among 58 SNPs implicated in epilepsy GWAS: rs1046276 (T/C), rs3743123 (G/A) and rs1801133 (G/A); serum proteins showed small differences between TSC patients w/ and w/o seizures; oxidative stress

### Diagnostic biomarkers

**Interictal scalp fast ripples** observed to occur in children with TSC-associated epilepsy exclusively, absent in controls without epilepsy

 $\alpha$ -[11C]-methyl-L-tryptophan (AMT) - only molecular probe in PET capable of localising epileptic foci in the interictal state; sensitivity ~ 70% & specificity ~ 100%

## **Prognostic biomarkers**

Cyst-like tubers – aggressive seizures; predominance of poorly organized tubers; increased tuber count – strongly associated with infantile spasms; white matter mean diffusivity; cerebellar lesions – more severe clinical and neuroradiological phenotype

# Seizure prophylaxis with mTOR inhibitors

#### Critical time windows for mTOR inhibition

- mTOR inhibitors to modify neural migration and synaptogenesis caused by mTOR hyperactivation
- In humans, synaptogenesis lasts until around 3.5 years old
- Dysfunction relapse after mTOR inhibitor withdrawal was shown by animal studies – seizures occurred a few weeks after stopping treatment

#### Clinical evidence of seizure prophylaxis in TSC

- Effectiveness of prophylaxis for epilepsy in TSC established for vigabatrin: the risk of developing clinical seizures by school age was 50% w/ vigabatrin prophylaxis (vs 96% w/o prophylaxis)
- Everolimus on seizure control in TSC patients before seizure onset was mentioned by a few anecdotal reports (Goyer et al. 2015; Chang et al. 2017; Hoshal et al. 2015)

## Conclusion

- Clinical trials have proven the efficacy and safety of mTOR inhibitors, principally everolimus, for seizure control in TSC.
- Effects of everolimus were shown to be mediated by duration- and dose-dependent mechanisms and more pronounced in patients with young age, low baseline seizure frequency, low level of cerebral parenchymal calcification and refractory seizures.
- Predictive biomarkers, incl. EEGs, genetics, miRNAs and immuno-inflammation changes, could identify high-risk patients and prompt initiation of prophylaxis.
- Diagnostic and prognostic biomarkers could confirm diagnosis and monitor response to treatment and disease progression.
- Animal studies have shown that mTOR inhibitors could modify neural migration and synaptogenesis caused by mTOR hyperactivation, if given within critical time windows.
- Widespread effects of mTOR blockade are unknown and case reports of everolimus prophylaxis in TSC patients were inconclusive.
- Future clinical trials needed to study everolimus prophylaxis in young, asymptomatic patients and in combination with other AEDs.

### References

Available at https://tinyurl.com/mTORinhibitor