

Diagnostic performance of conventional MRI vs machine learning based algorithms for brain tumors

Surobhi Chatterjee*,KGMU,INDIA.;<u>Rama Alkhaldi, RCSI,IRELAND*</u>;Praggya Yaadav,MIMSR,INDIA;L Deepak Bethineedi, AMC, INDIA;Nourou Dine A.Bankole,Ibn Bin Sina Hospital, MOROCCO

Background- T1WI MRI forms the basis for diagnosis at present but it faces several limitations. Machine learning algorithms requires less expertise and has comparable diagnostic accuracy.

Objective- This systematic review and metaanalysis was performed to compare the diagnostic performance of conventional MRI v/s Machine learning (ML) algorithms for brain tumors.

Methodology-

The study protocol was registered with PROSPERO CRD42021289726. A Systematic Review of PubMed, EMBASE, Google Scholar and Cochrane databases along with registries (WHO ICTRP and Clinical trials) through 1980-2021 was done.

Inclusion criteria-

Original articles in English evaluating

Conventional MRI or ML algorithms with/without usage of reference standard (histopathological analysis) were included. The studies which reported sensitivity, specificity or information for creation of a 2 x 2 contingency table were included Data was extracted by 2 independent reviewers and Meta-analysis was performed using a bivariate regression model.

References-

Bae, S. et al. (2020). Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: Model development and validation. *Scientific Reports*, *10*(1), 12110.

Gates EDH, Lin JS, Weinberg JS, Prabhu SS, Hamilton J, Hazle JD, et al. Imaging-Based Algorithm for the Local Grading of Glioma. AJNR Am J Neuroradiol. 2020 Mar;41(3):400–7.

Meta analysis and forest plots of the included studies

Author (Name and year)	ТР	F N	FP	TN	Sensitivity	Specificity
					(95% CI)	(95% CI)
Gates et al (ML MRI LGG, 2020)	41	1	2	53	0.98(0.88,1.00)	0.96(0.88,0.99)
Gates et al (ML MRI HGG, 2020)	6	0	0	53	1.00(0.61,1.00)	1.00(0.93,1.00)
Jun et al (ML MRI per patient, 2018)	18	1	0	46	0.95(0.75,0.99)	1.00(0.92,1.00)
Jun et al (ML MRI per lesion, 2018)	56	1	1	7	0.98(0.91,1.00)	0.88(0.83,0.98)
Gates et al (CMRI HGG, 2020)	4	3	0	52	0.57(0.25,0.84)	1.00(0.92,1.00)
Gates et al (CMRI LGG, 2020)	36	5	3	52	0.88(0.74,0.95)	0.95(0.85,0.98)
Dort et al (CMRI, 2001)	51	6	1	542	0.89(0.79,0.95)	1.00(0.99,1.00)
Pooled					0.93(0.88,0.95)	0.99(0.98,1.00)

Results .

- Twelve studies with 1247 participants were included for systematic analysis and 3 studies for meta-analysis.
- ML algorithms had better aggregate sensitivity and specificity (80%, 83.14%) than Conventional MRI (81.84%, 74.78%) in the systematic review.
- The pooled sensitivity, specificity, DOR for the metaanalysis were 0.926 (95% CI, 0.840-0.926), 0.991 (95% CI, 0.955-0.998) and 1446.946 (312.634-6692.646) with AUC=0.904 under HSROC.
- On comparing, the pooled sensitivity, specificity and DOR for Conventional MRI were 0.866 (95% CI, 0.785-0.920) ,0.995 (95 % CI, 0.927-1.00), and 1191.33 whereas that of Machine learning algorithms at 0.975 (95% CI, 0.920-0.992) and 0.984 (95% CI, 0.913-0.997) , 2415.74.

Conclusion-

Ω

Machine learning algorithm have superior diagnostic performance and accurate predictive capability than Conventional imaging for brain tumors.

